Rice putative methyltransferase gene OsTSD2 is required for root development involving pectin modification

نویسندگان

  • Lianghuan Qu
  • Chunyan Wu
  • Fei Zhang
  • Yangyang Wu
  • Chuanying Fang
  • Cheng Jin
  • Xianqing Liu
  • Jie Luo
چکیده

Pectin synthesis and modification are vital for plant development, although the underlying mechanisms are still not well understood. Here, we report the functional characterization of the OsTSD2 gene, which encodes a putative methyltransferase in rice. All three independent T-DNA insertion lines of OsTSD2 displayed dwarf phenotypes and serial alterations in different zones of the root. These alterations included abnormal cellular adhesion and schizogenous aerenchyma formation in the meristematic zone, inhibited root elongation in the elongation zone, and higher lateral root density in the mature zone. Immunofluorescence (with LM19) and Ruthenium Red staining of the roots showed that unesterified homogalacturonan (HG) was increased in Ostsd2 mutants. Biochemical analysis of cell wall pectin polysaccharides revealed that both the monosaccharide composition and the uronic acid content were decreased in Ostsd2 mutants. Increased endogenous ABA content and opposite roles performed by ABA and IAA in regulating cellular adhesion in the Ostsd2 mutants suggested that OsTSD2 is required for root development in rice through a pathway involving pectin synthesis/modification. A hypothesis to explain the relationship among OsTSD2, pectin methylesterification, and root development is proposed, based on pectin's function in regional cell extension/division in a zone-dependent manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rice Homeodomain Protein WOX11 Recruits a Histone Acetyltransferase Complex to Establish Programs of Cell Proliferation of Crown Root Meristem.

Shoot-borne crown roots are the major root system in cereals. Previous work has shown that the Wuschel-related homeobox gene WOX11 is necessary and sufficient to promote rice (Oryza sativa) crown root emergence and elongation. Here, we show that WOX11 recruits the ADA2-GCN5 histone acetyltransferase module to activate downstream target genes in crown root meristem. Rice ADA2 and GCN5 genes are ...

متن کامل

Auxin and Cell Wall Invertase Related Signaling during Rice Grain Development

Indole-3-acetic acid (IAA) synthesis is required for grain-fill in maize and appears to be regulated by cell-wall invertase (CWIN) activity. OsYUC12 is one of three IAA biosynthesis genes we previously reported as expressed during early rice grain development, correlating with a large increase in IAA content of the grain. This work aimed to investigate further the role of OsYUC12 and its relati...

متن کامل

Changing spaces: the Arabidopsis mucilage secretory cells as a novel system to dissect cell wall production in differentiating cells1

As the outer boundary of plant cells, the cell wall is integral to all aspects of plant growth, development, and interactions with the environment. Dicot primary cell walls are composed of a network of cellulose, hemicellulose and proteins embedded in a matrix of acidic pectins. Pectins are synthesized in the Golgi apparatus by the sequential addition of nucleotide sugars by glycosyltransferase...

متن کامل

Biolistic co-transformation of rice using gold nanoparticles

ABSTRACT- In order to produce transgenic rice lines lacking selectable marker gene, biolistic co-transformation technique using gold nanoparticles was adopted. In the first step, the efficiency of different sizes of gold particles was evaluated. The results showed that the efficiency of the nanoparticles in the transformation was comparable to that of the micro particles. Subsequently, two sepa...

متن کامل

QUASIMODO 3 (QUA3) is a putative homogalacturonan methyltransferase regulating cell wall biosynthesis in Arabidopsis suspension-cultured cells

Pectins are complex polysaccharides that are essential components of the plant cell wall. In this study, a novel putative Arabidopsis S-adenosyl-L-methionine (SAM)-dependent methyltransferase, termed QUASIMODO 3 (QUA3, At4g00740), has been characterized and it was demonstrated that it is a Golgi-localized, type II integral membrane protein that functions in methylesterification of the pectin ho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 67  شماره 

صفحات  -

تاریخ انتشار 2016